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SUMMARY

An important class of techniques to reduce helicopter vibration is based on using a Higher Harmonic
controller to optimally define the Higher Harmonic blade pitch. These techniques typically require solu-
tion of a general optimization problem requiring the determination of a control vector which minimizes
a performance index where functions of the control vector are subject to inequality constraints. Six
possible constraint functions associated with swashplate blade pitch control were identified and defined.

" These functions constrain: 1) blade pitch Fourier Coefficients expressed in the Rotating System, 2) blade
pitch Fourier Coefficients expressed in the Nonrotating System, 3) stroke of the individual actuators
expresed in the Nonrotating System, 4) blade pitch expressed as a function of blade azimuth and actuator
stroke, 5) time rate-of-change of the aforementioned parameters, and 6) required actuator power. The
aforementioned constraints and the associated kinematics of swashplate blade pitch control by means of
the strokes of the individual actuators are documented herein.



1.0 INTRODUCTION

An important class of techniques to reduce helicopter vibration is based on using a Higher Har-
monic controller to optimally define the Higher Harmonic blade pitch. These techniques typically require
solution of a general optimization problem requiring the determination of a control vector which min-
imizes a performance index where functions of the control vector are subject to inequality constraints
(see sec. 2.3.1 of ref. 1). When solving these problems, it is extremely important to remember that
the “truthfulness” or “correctness” of the solution depends not only on the validity of the mathematical
methods employed to obtain the solution, but also on the “truthfulness” or “correctness” of the problem
definition. In deductive mathematics, as in the case classical Aristotelian deductive logic, it is necessary
that BOTH the syllogistic deductive reasoning be VALID and the assumed propositions be TRUE in
order to assert that the conclusion is TRUE.

The “truthfulness of the propositions” is often overlooked or ignored when attempting to solve
difficult mathematical optimization problems with sometimes unfortunate results. Obviously, approxi-
mations to “truthful” propositions can be required in order to reduce the problem to a tractable form,
but oftentimes these approximations are made because of misunderstandings of what the problem really
is (i.e., the real definition of the performance index and constraints). Concern about the correctness
of the constraint formulation for the helicopter vibration minimization problem prompted the analysis
documented herein.

2.0 TECHNICAL

Six possible constraint functions associated with swashplate blade pitch control were identified and
defined. These functions constrain: 1) blade pitch Fourier Coefficients expressed in the Rotating System,
2) blade pitch Fourier Coefficients expressed in the Nonrotating System, 3) stroke of the individual
actuators expressed in the Nonrotating System, 4) blade pitch expressed as a function of blade azimuth
and actuator stroke, 5) time rate-of-change of the aforementioned parameters, and 6) required actuator
power. The aforementioned constraints and the kinematics of swashplate blade pitch control referenced
to the individual strokes of the actuators in the nonrotating system are described in the following
subsections.

2.1 Rotating System Fourier Coefficients

If given the Fourier Coefficients for an entity expressed in the Rotating System, say 0( N-1)¢»
bwv-1)s; ONes ONgs Oy B(v),

where
@ is a Fourier Coefficient
N C is the number of blades
¢ refers to a cosine term
s refers to a sine term

consider a pair of monofrequency coefficients 6, 65




Let
y = fssiny + f.cosy

where
v 1is either (N-1)Q, or NQt, or (N+1)Qt
Q is the rotor rotation rate
t is the time
Noting that
sin(a & B) = sinacos B +£ cos a sin B

cos(a = 3) = cosaxcos B F sinasin 8

Then

0 0
—Jo2 o p2) | Y ) Ve
Y 03+€C{( r___9‘%-*_%) sm'y+( ’_6§+02) cos'y}

y = /62 + 62 {cos 1 siny + sin ) cos 7}

or

where 7 is phase angle

and ; )
CoSY = —>— | singhp = ——e
VOE + 62 V03 + 62
Then
¥ = arc[siny,cos¢)] or P = tan—! (%)
S
So

y = /63 + 6%sin (v £ )

The magnitude constraint is just a constraint on the amplitude; hence the constraints become:

2 2 2
-1, T Ov-n, = Ava
0%, + 6%, < 4%

IA

2 2 2
Oiven, T v AN

2.2 Nonrotating System Fourier Coefficients

If given the Fourier Coefficients for an entity expressed in the Nonrotating System, say 6¢corL..,
OcorLs» OLAT., OLAT, OLONG. OLAT,



where :

0 either a collective, or a lateral cyclic, or a longltudmal cychc coefficient
COL  refers to a collective coefficient

LAT  refers to a lateral cyclic coefficient

LONG refers to a longitudinal cyclic coefficient

c refers to a cosine term

s refers to a sine term

then for oscillations at m per rev (see ref. 2)

0 =0cor +0raTcos it + Orone sin

where
Ocor = Ocor, + bcor,sinmQt + 6cor, cosmlt
Orar = Orany + Opar,sinmQt  + Opa7 cosmQt
brong = 010 NG, + frong,sinmQt + 010 NG, cos m{dt
t is the time

In a manner similar to that employed for the Rotating System Fourier Coefficients (see sec. 2.1),
fcoL, OraT, and 61,0 n¢ can be expressed

bcor = bcor, -+ \/9%0L8 + H%OLC {cos oL sinmQt + sin oo, cos mat}

brar = Orar, + \/B%ATS + 012:ATC {cos Y o sinmQt + sin 47 cos mNt}

brone = brong, + \/ 0%0 NG, T 6%0 NG. {cosronG sinmQt + sinprong cosmt}

where
YeoL,¥LaT;and YronG are phase angles
and 9 p
cosycor = 5 oL 5 , sinYcor = 5 0L >
Vb&or, + %01, Vb%or, +9%or,
7] 7]
COSYLAT = > L% 5 » SInYrar = 5 LAL 5
VO%ar, + 6347, VO%ar, +0%aT,
g 0
COSYLONG = —T= LONG; » SIMYLONG = = LONGSQ
Vbione, T 9%one, Vbione, +%%ona,
Then
X —1 (0oL
YoorL = ac[singcor,cospopor]  or Yoor = tan~l[-Z2%e
fcoL
S
) _1(8raT
Yrar = arc[sinypar,cosprar] or Yrar = tan~! (W
S

tan=1 (9L0NGC>

YLong = arc[sinYrong,cos¥rong] or Yrong
LONG [ G ] 9LONG5



The magnitude constraints on collective, lateral cyclic, and longitudinal cyclic are just constraints on
their respective amplitudes; specifically:

IN

2 2 2
bcor, + %cor. AtorL

9 9 2
0tar, + 97ar. < ALar

2 2 2
Otong, + 9iong. < Aione

2.3 Individual Actuator Stroke

The magnitude constraints are just constraints on the vertical excursion of the individual actuators;
specifically:
21 < A4
zg < Az
z3 < A3

If the motion of the actuators is sinusoidal, z1, 29, and z3 are expressed:

z1 = z9, + Cysin(NQt+¢1)
20 = 29, + Co sin(NQt + ¢9)
z3 = 29, + C3sin(NQt+ ¢3)

where
N is the number of blades
Q is the rotor rotation rate
t  is the time
¢; is phase angle for the i-th actuator; i =1, 2, 3
zg 1is the reference actuator length

The magnitude constraints for the individual actuators becomes

C1<4
Cy < A
C3 < Az

2.4 Blade Pitch Expressed as Function of Blade Azimuth and Actuator Stroke

To obtain an expression for the blade pitch as a function of blade azimuth and actuator stroke, the
motion of the swashplate expressed as a function of the individual actuator strokes is derived first (see
subsection 2.4.1). Next, the vertical position of a general field point (i.e., the end of a pitch link) is



defined (see subsection 2.4.2). Then finally, the blade pitch angle is defined from the vertical position
of the pitch link (see subsection 2.4.2.3).

2.4.1 Canonical Swashplate Plane Equation

A necessary condition for a general field point P(z,y, z) to lie on the swashplate plane (see fig. 1)

is:

(R-To)- [(Fa o) (B - )] =0

I

1

Ry
Rg

Let D denote the matrix defined by

o 2 =l
!

I

D =

-~ -~ ~

OP = zi + yj + 2k
Wl = :L'ﬁ + y13 + zllzz
ﬁg = 1'22 + y23’ + 22];:
OP3 = =31 + y3j + =3k

=TI Yy—n z2—2
I2—T1 Y2—Yy1 22—2
T3—T1 Y3—Y1 =23—2

The swashplate plane defined by équation (1) can be expressed

T—z1 Yy-y1  z—2z
T2—T1 Y—-y1 22-—2 [=0
T3—T1 Y3—y1 23— 2]

Cr(z—x1)+Cy(y—y1) +C2(2 — 21) =0

Det(D) =
or still
where
Cz = cofp(z—z1)
Cy = cofply—u1)

C, = cofp(z—2)
Equation (4) can be rewritten as:

= (y2—u)(z3—21) — (y3—-v1)(22—21)
(z3 —z1)(22 —21) — (x2—z1)(23 — 21)
= (ze—z1)(¥3—11) — (z3—2z1)(y2— 1)

me -+ ny -+ CzZ = Cxl']_ + nyl + CzZ]_

Let
and
Dy =
Then
r Yy
D; "Dy

D D D
Cx ’ y Cy ’ z CZ
Canonical form
+ - 1 of the swashplate
D,

plane equation

(M

)

3)

C))

®)



Points P4(x4, y1, 21), Pa(x2, y2, 25), and P3(x3, ¥3, 23)
define the swashplate plane.

Coordinates z4, Zg, 23 define the vertical position of
the actuator reference points on the swashplate plane.

The x-y plane is the Nonrotating System datum plane.
The z-axis is the Shaft Axis.

Figure 1. Swashplate plane geometry.



To evaluate D, note that

I Y1 21 1 0N
D=lzo—21 92-y1 2-2|=|22 ¥
I3—T1 Y3—Y%y1 23—21 3 Y3
Let R denote the matrix defined by
T N 2
R=|z2 92 2
3 Y3 23
Then
1 1 A
D=Det(R)=|z9 y2 29
3 Y3 23

2.4.2 Vertical Position of a General Field Point

Z1

22
<3

(6)

The vertical position of a general field point on the swashplate plane is defined by solving equa-

tion (5) for z; specifically:

_ _z*_Y
.

Recalling that

D D D
D.=— = — = —
et Cx b ‘Dy Cy ? 'DZ Cz
Equation (7) can be expressed
1
Recalling that
Cz = (y2 —v1)(23 — 21) — (¥3 — 91)(22 — 21)
Cy = (z3 — z1)(22 — 21) — (z2 — 21)(23 — 21)
C: = (z2 —z1)(y3 — v1) — (z3 — z1)(v2 — ¥1)
and
1 N 2
D=Det(R)=|z2 y2 29
I3 Y3 =3
Then

Cr=(y3—y2)z1+ (y1 —v3)22 + (y2 — v1)23
Cy = (z2 — z3)21 + (23 — 21)22 + (21 — z2)23
Cr = (z2 —z1)(y3 —y1) — (3 — z1)(v2 — 11)

(7)

)

®
(10)
(11)



and
D = (zoy3 — z3y2)21 + (z3y1 — T1y3)22 + (T1¥2 — T2¥1)23
Note that 27, 29, and 23 do not appear in equation (11).

Equation (8) can now be expressed
z = [zoy3 — z3y2 — (y3 — ¥2)7 — (22 — 23)y]21

+{z3y1 — v1y3 — (¥1 — y3)z — (23 — z1)y)22

+[z1y2 — 211 — (¥2 — y1)z — (21 — T2)y)23
(x2 —z1)(y3 —y1) — (3 — z1)(y2 — v1)

which has the form

z = (Ajz + B1y + C1)21 + (A2z + Bay + C2)z2 + (A3z + B3y + C3)z3

—(y3—y2) )
z
B, = =lzz==a)
1 z
— Z2Y3—T3y2
Cy = _%CfL

Ay = —(y1—y3)

F4

By = j%:ﬂl » Note: No z’s anywhere
C2 — :an]—z.’!,‘lzﬁ

A3 = _(y2:yl)

B3 — —(z1—-z2)
Gy = =gz

where

>
I

(12)

(13)

(14)

(15)

2.4.2.1 Vertical position of a general field point expressed in the nonrotating system. Equa-
tion (14), which is expressed in the Nonrotating System, defines the vertical position of a general field
point on the swashplate plane. If the actuators move sinusoidally with N/rev frequency, the vertical

position of the actuator reference points (i.e., 21, 22, and 23) can be expressed:
21 = 20, + E1sin(NQt + ¢1)
29 = 20, + Easin(NQt + ¢2)
23 = 2, + E3sin(NQt + ¢3)
Substitution of equations (16) into equation (14) yields:
z = (A1z + By + C1)[20, + Eq sin(NQt + ¢1)]
+(A2z + Bay + C2)[20, + Eo sin(NQt + ¢2)]
+(A3z + B3y + C3)[20; + E3sin(NQt + ¢3)]

(16)

(17)



An appropriate Control 6-Vector is suggested; specifically:

[ Ep T
Ey
Es
?1
@2
| @3 |

Equation (17) with its three sinusoidal terms can be expressed in a form which has only one sinusoidal
term by using the Rule for the Linear Combination of Monofrequency Sinusoidal Terms which is
described in appendix A.

(18)

2.4.2.2 Vertical position of a general field point expressed in the rotating system. Equation (14),
which is expressed in the Nonrotating System, can be applied to the Rotating System by defining the
z and y coordinates of reference points on the pitch links as they rotate about the rotor shaft axis. For
convenience in demonstrating the harmonic nature of the kinematics, it is assumed that the pitch links
describe a right circular cylinder as they rotate about the rotor shaft axis (see fig. 2). It is emphasized
that, in general, this assumption need not be made and that the pitch link motion need not describe a
right circular cylinder in order to obtain the harmonic kinematic form derived subsequently. For those
cases in which the up/down motion of the pitch links can be adequately described using small angle
approximations, the z and y coordinates of the pitch links are expressed by:

x = rcos(Q + ¢s)
y = rsin(Qt + ¢s) (19)
where
T is the radius of the right circular cylinder
t is the time

Q is the rotor rotation rate
¢s is the phase angle

If the actuators move sinusoidally with N/rev frequency, the vertical position of the actuator reference
points (i.e., z1, 22, and z3) can be expressed:

21 = 29, + Eq sin(N§QU + ¢1)
29 = 29, + Eosin(NQU + ¢2) (20)
23 = 20, + E3sin(NQt + ¢3)

Substitution of equations (19) and (20) into equation (14) yields:
z = [A17 cos(t + ¢s) + Byrsin(Qt + ¢5) + C1l[z0, + E1 sin(NQt + ¢1)]
+[Aar cos(Qt + ¢s) + Borsin(Qt + ¢s) + Co[z0, + Eo sin(NQt + ¢9)] ¥3))
+[Asrcos(Q + ¢s) + Barsin(Qt + ¢s) + Cs][20, + E3sin(NQt + ¢3)]

10



N—T1" |+——— Pitch link

\
Ty

CD; \ Swash Plate Plane

1
1]
] > Actuators

s 7

$ : Y
L T~ Datum Plane

Figure 2. Actuator, swashplate plane, and pitch-link geometry.

Actuator —

\|Z

11



As in the case of the Nonrotating System (see sec. 2.4.2.1), an appropriate Control 6-Vector is:

Expanding equation (21) by taking the indicated products yields:

z = Ay20,7cos(Qt + ¢s) + Byzo, 7 sin( + @) + C12p, )

Noting that:

12

+A1E17sin(NQE + ¢1) cos(Q + ¢5) + BLE1rsin(NQt + ¢1) sin(Q + ¢s)
+C1 By sin(NQE + ¢;)

+Azp,7 cos(§ + ¢s) + Bozg,r sin(Qt + ¢5) + Caz,

+Ap Epr sin(NQt + ¢o) cos(Qt + @s) + By Ear sin(NQt + ¢9) sin(Qt + ¢s)
+C2Eo sin(NQt + ¢o)

+A320,7 cos(Q2 + ¢s) + Bazg, sin(Q + ¢s) + Ca2p,

+AzE3rsin( NQt + ¢3) cos(Qt + ¢5) + B3 E3rsin(NQt + ¢3) sin(Qt + ¢5)
+C3 By sin(NQt + p3)

~

sin(la £ fB) = sinacosf =+ cosasinf

cos(a =) = cosacosf Fsinasinfg
sinasinf = —% cos(a + B) + %cos(a - B)
sinacosf = %sin(a +08) + % sin(a — 8)
cosasinf = %sin(a +8)— % sin(a — B)
cosacosf = %cos(a +06) + %cos(a - B)

(22)

(23)



Equation (23) is further expanded

z = Aj2zp,7[cos g5 cos QU — sin ¢s sin Qt] + By zg, r[cos @5 sin Qt + sin ¢ cos Ot )
+C120, + A1 Eyrcos ¢y sin NQt + sin ¢ cos NQt][cos @5 cos 2t — sin @ sin Q1]
+Bj Eqr[cos ¢1 sin NQt + sin ¢1 cos NQt][cos @5 sin Qt + sin ¢ cos Q]
+C1Eq[cos ¢ sin NQt + sin ¢ cos Nt]
+Agz0,7[cos ¢s cos Ut — sin @ sin Q] 4+ Bazg,7[cos ¢s sin Ut + sin ¢ cos 2]
+Ca20, + A2 Egr|cos ¢2 sin NQt + sin ¢ cos NQt][cos ¢s cos Qt — sin ¢ sin Q]
+ By Egr[cos ¢ sin Nt + sin ¢ cos N2t][cos @ sin 2 + sin @5 cos Q]
+Cs Es[cos ¢9 sin Nt + sin ¢ cos NQ]
+Asyo,Tcos ¢ cos QU — sin @ sin Qt] + B3z, r[cos ¢s sin Qt + sin @5 cos Q]
+C320, + AzEgr|cos @3 sin NQt + sin ¢3 cos NQt][cos ¢ cos Qt — sin @ sin Q]
+BsE3r{cos ¢3 sin NQt + sin ¢3 cos NQt][cos ¢ sin Qt + sin ¢ cos Q]
+C3E3[cos ¢3 sin Nt + sin ¢3 cos Nt} )

b (24)

Expanding the products for k£ =1, 2, 3
[cos @ sin Nt + sin ¢y, cos NQt][cos ¢ cos QU — sin ¢ sin Q]

= cOS ¢}, cos ¢ sin N2t cos (2t + sin ¢y, cos ¢ cos N2 cos 2
—cos ¢k sin ¢s sin NQt sin Qt — sin ¢, sin ¢ cos N2t sin §2¢
= 3 c0s ¢, cos ¢ {sin[(N + 1)Q¢] + sin[(N — 1)Q¢]}
+% sin ¢y cos ¢ {cos[(N + 1)Qt] + cos[(N — 1))}
+% cos @, sin ¢s {cos[(IV + 1)) — cos[(N — 1)2t]}
—1 sin ¢y, sin g5 {sin[(V + 1)Qt] — sin[(V — 1)Qz]}
= %[cos @), €os s — sin ¢y, sin ¢g] sin[(N + 1)]
+1[sin ¢ cos ¢ + cos ¢, sin ¢s] cos[(V + 1)
+%[cos @) COs ¢s + sin ¢y, sin @] sin[(N — 1)Q]
~+4[sin ¢y, cos ¢ — cos gy sin ¢s] cos[(V — 1))
= %cos(d)k + ¢s) sin[(V + 1)Qt] )
+4 sin(¢, + ¢s) cos[(V + 1)]
+3 cos(¢y, — ¢s) sin[(N — 1)Q]
+3 sin(¢y, — ¢s) cos[(N — 1)Qt] J
fork=1,2,3

> (25)
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and likewise:

[cbs @ sin N2t + sin ¢y cos NQt][cos @5 sin Qt + sin g5 cos Q]

= COs ¢y, cos ¢ sin NQt sin Qt + sin ¢y, cos 5 cos NQt sin Ot
+ cos ¢y, sin ¢ sin N2t cos Qt + sin ¢, sin ¢ cos NQt cos Qt

= % c0s ¢, €08 ¢s {— cos[(V + 1)) + cos[(V — 1)Q¢]}
+% sin @, cos ¢ {sin[(N + 1)Q¢] — sin[(N — 1)Q¢]}
+35 cos ¢y, sin ¢ {sin[(V + 1)Q] + sin[(N — 1))}
-+ sin ¢y, sin ¢ {cos[(V + 1)Qt] -+ cos[(N — 1)Qt]}

= #[sin ¢y, cos ¢s + cos ¢y, sin ¢g] sin[(N + 1)24]
—%[cos @), €Os s — sin ¢y, sin @] cos[(N + 1)Q]

— 3 [sin ¢, cos ¢s — cos ¢y, sin ¢s] sin[(N — 1)Q]
+3[cos ¢, cos ¢s + sin ¢y, sin ) cos[(N — 1)Qt]

= & sin(¢y, + ¢s) sin[(N + 1)Q] )
—13 cos(¢y, + ¢s) cos[(NV + 1)Q]
— 3 sin(¢ — ¢s) sin[(N — 1))
+3 cos(¢y — ¢ps) cos[(N — 1)€] )
fork=1,2,3

> (26)
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Substituting equations (25) and (26) into equation (24) yields

z = Ajzg,7[cos ¢s cos Qt — sin ¢ sin Q] + By 29, 7[cos @ sin Qt + sin ¢ cos Q] )

+C1 20, + 3 A1 Eyr{cos(¢1 + ¢s) sin[(N + 1)Qt] + sin(d; + ¢s) cos[(NV + 1)§]
+cos(P1 — ¢s) sin[(N — 1)Qt] + sin(¢y — ¢s) cos[(N — 1)Qut]}

+§B1 Eyr{sin(¢; + ¢s) sin[(N + 1)Qt] — cos(¢y + ¢s) cos[(N + 1)Qt]

—sin(¢1 — ¢s) sin[(N — 1)Qf] + cos(¢1 — ¢s) cos[(NV — 1)%]}

+C1 Ej[cos ¢1 sin NQt + sin ¢; cos NQt]

+Ag2p,7[c0os @5 cos Ut — sin ¢ sin Qt] 4+ Bozg,T[cos ¢ sin 2t + sin ¢ cos Q]
+Cozp, + %AgEgr{cos(gbz + ¢s) sin[(N + 1)Qt] + sin(d2 + ¢s) cos[(N + 1)]
- cos(dz — s) sin[(N — 1)0] + sin(gy — ¢s) cos[(N — 1)2]}
+%BQE2r{sin(¢2 + ¢s) sin[(N + 1)Qt] — cos(¢2 + ¢s) cos[(N + 1))

— sin(¢g — @) sin[(N — 1)Qt] + cos(¢g — ¢s) cos[(N — 1))}

+Co Eg|cos ¢ sin NQt + sin ¢ cos NQt]

+A320,7[cos ¢s cos Qt — sin ¢ sin Qt] 4+ B3z, 7[cos ¢ sin 2t + sin ¢ cos ]
+C3205 + 5 A3E3r{cos(¢3 + ¢s) sin[(NV + 1)Q] + sin(d3 + bs) cos[(NV + 1)Q]
+cos(¢p3 — ¢s) sin[(N — 1)Qt] + sin(¢3 — ¢5) cos[(N — 1)Q¢]}

+5 B3 E3r{sin(¢3 + ¢s) sin[(N + 1)Qt] — cos(¢3 + ¢s) cos[(N + 1))
—sin(¢3 — ¢s) sin[(N — 1)Qt] + cos(d3 — ¢s) cos[(N — 1))}

+C3E3|cos ¢3 sin NQt + sin ¢ cos NQt]

’ 27
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Rearranging the terms in equation (27) results in:

z = [C120, + Cazp, + C320,] )
+r[—Aj2q, sin@s + B12p, cos s — A2z, sin ¢
+Bazg, cos ¢s — Az2p, sin ¢s + B3zq, cos ¢s) sin Qi
+r[A120, cos s + By 2, sin ¢s + Ag2g, COS s
+Baz, sin ¢s + A3z, cos ¢s + B3zq, sin @s| cos Ot
+57[A1E) cos(¢1 — ¢s) — B1Ey sin(¢1 — ¢s) + Az Fa cos(da — ¢s)
—ByEs sin(¢2 — ¢s) + A3E3 cos(¢3 — ¢3) — B3E3sin(¢3 — ¢s)] sin[(N — 1)Qt]
+47[AEy sin(¢1 — ¢s) — B1E cos(¢1 — ¢s) + Az Ea sin(¢p — ¢s) > (28)
+BoEy cos(¢a — ¢s) + AzE3sin(¢3 — ¢s) — BgEz cos(p3 — ¢s)] cos[(N — 1)]
+[C1E1 cos ¢1 + CoEo cos g + C3E3cos ¢g) sin NQt
+[C1 E; sin ¢ + Co Es sin ¢9 + C3E3 sin ¢3] cos Nt
+37[A1E1 cos(¢1 + ¢s) + BiEysin(¢y + ¢s) + Aa By cos(¢a + s)
+BgFEs sin(¢o + ¢s) + AsE3 cos(d3 + ¢s) + BsE3sin(¢z + ¢3)] sin[(V + 1)Qt]
+3r[A1 By sin(¢1 + ¢s) — B1Ey cos(¢) + ¢s) + A2 By sin(¢s + ¢s)
—BaEp cos(¢2 + ¢s) + AgE3 sin(@3 + ¢s) — B3E3cos(d3 + ¢s)] sin[(N + 1)Qt] )

Note: z represents an arbitrary vertical reference position along a pitch link

2.4.2.3 Blade pitch. A simplified model of the pitch link, pitch link connecting arm, and blade
angle geometry is presented below to illustrate the nature of the geometry. This geometry is rotor head
peculiar and, correspondingly, each case requires individual analysis.

It is assumed that the pitch link is parallel to the rotor shaft about which it rotates and that it
describes a right circular cylinder as it rotates about the rotor shaft (see fig. 2). It is further assumed
that the pitch link connecting arm is nearly perpendicular to the pitch link and to the blade pitch axis
(see fig. 3). Finally, it is assumed that the pitch angle 6 is small enough so that

sinf ~ 6

cosf =1
Then

16+ 6p) =z— 29 (29)
or Y s
g=2""00_y
l

where

6 is the incremental blade pitch angle measured from 6
6o is an arbitrary baseline trim value of 6 ‘
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Figure 3. Pitch link, pitch-link connecting arm, and blade-angle geometry.
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[ is the pitch link connecting arm length
z  is the vertical position of the end of the pitch link
zop is the reference value of z which corresponds to 6

2.5 Rate Control

Rate control is achieved by first taking the time derivative of the entity whose rate is to be
constrained, and then by defining a constraint function for this time derivative. The entities whose rates

are (0 be determined have one of two basic forms; these are:
y = Asinwt + Bcoswt

and
y = yo + Csin(wt + )

The first form is used for Fourier equations expressed in both the Rotating and Nonrotating Systems as
described in sections 2.1 and 2.2, respectively. The second form is used for the sinusoidal individual
actuator strokes described in section 2.3. The time derivative and constraint function for each of these

forms are presented in subsections 2.5.1 and 2.5.2, respectively.

2.5.1 Rates for the Form y = Asinwt + Bcoswt

If given
y = Asinwt + Bcoswt
Then
¥ =wAcoswt —wBsinwt
Noting that

sin(a £ B) = sinacos 8 + cosasin B

cos(a %+ 8) = cosacos B F sin asin B

)= v/ (wA)2 + (wB)2 wA cos wt — wB
= V@A) + WB) {(\/(wA)mwB)?) ot (

9 = wVAZ + BZ{coswt cosy — sinwt sin 7}
where 7y is the phase angle defined by

A . B
COSY = —e—r ,  SiNY = ———
1= AT B2 Ly vy

B
v = arc(sinvy,cosy) or ~=tan"} <Z)
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So:
¥ = wVAZ + B2 cos(wt + ) (31)

The rate constraint is just a constraint on the amp]itude of equation (31); specifically:

wy\/ A2+ B2< Ap (32)

2.5.2 Rates for the Form y = yg + C sin(wt + =)

If given
y = yo + Csin(wt + 7) (33)
Then
y = wC cos(wt + 7) (34)

The rate constraint is just a constraint on the amplitude of equation (5); specifically:

wC < Ap 35)

2.6 Power

The hydraulic power required to operate the actuators can be the limiting factor in the use of Higher
Harmonic Control to reduce helicopter vibration. Correspondingly, it is desirable to be able to define a
constraint function which limits the hydraulic power and which is expressed in terms of variables which
are computed during the rotor simulation. Accordingly, the following procedure was defined to express
hydraulic power in terms of mechanical variables.

The Hydraulic Power (Pp) requirement is roughly proportional to the Mechanical Power (Pjs)
generated; specifically:

Py = KpPyy (36)

where K is the constant of proportionality.

The Mechanical Power (P)y) is proportional to the time rate-of-change of the Total Mechanical
Energy (E) of the system; specifically:

d
Py = Kp7(E) 37
where K is the constant of proportionality.

For the systems under consideration, the Total Mechanical Energy (E) can be assumed to be
comprised of the Kinetic Energy (T) and the Potential Energy (V) due to the presence of an effective
spring constant, and is the sum of the individual mechanical energies of several subsystems. These
subsystems include nonrotating system components such as the actuators themselves and rotating system
components such as the individual blades with hinges and linkages. The Total Mechanical Energy for
each of these subsystems is:

E=T+V (38)
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The Kinetic Energy (T) is proportional to (dz/dt)? in mi?/t2.

The Potential Energy (V) for an effective spring constant K is:
z
vzw_m=/ Fyde
200

where
Fs +K(§— )
K  the effective spring constant with units of 'IZJ' = Z"%

2o  vertical displacement at which the effective spring force is zero
200 reference vertical displacement at which V; is defined

Then

2z

V= K/zzo(ﬁ —z)dé =K [%52 - ZOE]

200

V=K [%z2 — 20z + <20200 - %zg())] in —

which can be expressed as

2
V=Fz2+Gz+Hinn:—é
where: 1 1
F=§K,Chvwﬂ,.H=KGmm—?&
Then
d; ml?
FE = D(dt) +F2+Gz+Hin — 7

where D is the constant of proportionality for T
Recalling equation (31), the Mechanical Power (Pjs) can be expressed as:

2

m
in ——

d dz\?
Py =Kpg [D (—z) +Fz? + Gz + H | in 73

dt

dz d2z dz
Py =Kpg 2D(dt> (dtz) +2Fz (dt)'f'G(dt):l

Q..

N

dt dt 3

i 2 2
RM=KE2D( )4@FﬁH4(h)hzi-
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2.6.1 Nonrotating Subsystems

It is assumed that the three actuators with their associated moving linkages are the three principal
nonrotating subsystems which must be considered. The Mechanical Power Py for each of the actuator
subsystems is expressed by equation (46) using the appropriate z position defined by equation (16) in
section 2.4.2.1; specifically if

21 = z9, + Epsin(NU+¢1)
2z = 20, + FE2sin(NQt+ ¢2) Equation (16) in section 2.4.2.1
z3 = 293 + E3sin(NQt+ ¢3)

then for actuator k, k = 1, 2, 3 the Mechanical Power P, is:
Py, = NQE Kg[2D{—N?Q2E; sin(NQt + ¢y)} |
+2F{zp, + Ej sin(NQt + @)} + G] cos(NQt + dy,) 47)
fork=1,2,3
Let sc(INdt) denote either sin(NQt) or cos(INQt) and noting that
sin(NQt + @) = cos ¢y, sin(NQt) + sin ¢y cos(NSt)
cos(NQt + @) = cos ¢y, cos(NQt) — sin ¢y, sin(NQt)
sin?(NQt) = %[1 — cos(2N Q)]
sin(NQt) cos(N Qi) = % sin(2NQt)
cos?(NQE) = %[1 + cos(2NQY)]
Equation (47) for the kth actuator subsystem has the form
Pypg, = By sin(NQt) + By cos(NQt) + B sin?(NQt) + By sin(NQt) cos(NQt)
+Bs cos?(NQt) ' (48)
Pyp, = Co + C1sin(NQt + (1) + Cosin(2NQt + (2) (49)

where Bi, By, B3, By, Bs, Cy, C1,C>, (3, and (o are constants. The total Mechanical Power Py, for
all three actuator subsystems is defined by summing the Mechanical Power Ppy, of each of these
subsystems. The result has the same form as that of equation (49), but where the constants are different;
specifically

Pyr = Do + Dy sin(NQt + 11) + Da sin(2NQt + 1ha) (50)
where Dy, D1, Do, 1, and 19 are constants.

If the power required by just the three nonrotating actuator subsystems is to be considered, then
the power constraint can be expressed as:

|Do| + |D1| + | D2| < [Prrlmaz (51)
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2.6.2 Rotating Subsystems

It is assumed that the /N individual blades with their hinges and linkages are the N principal
rotating subsystems which must be considered. The Mechanical Power P;, for each of the individual
blades is expressed by equation (46) using the z position defined by equation (28) in section 2.4.2.2
where the appropriate phase angle ¢s, for the 1-th blade is:

bs; = (i—1) (3?3

) fori=1,2,...,N (52)

where
N number of blades in the rotor
) blade number; i =1,2,..., N

In a manner similar to that employed for the nonrotating subsystems, the aforementioned procedure
(i.e., substitution of eq. (28) of sec. 2.4.2.2 into eq. (46)) will yield the power requirement for an
individual blade subsystem. Combining these results for each individual blade, an expression can be
obtained for the power requirements for all the rotating subsystems. This expression is the product of
two terms comprised of various harmonics of §2t; specifically:

Ppr = (TERM; )(TERMy) (53)
where:
TERM) = Ag + Ajsc(Qt) + Agsc[(N — 1)Qt] + Agsc(NQt) + Agsc[(N + 1)Qt]
TERMj = Bjsc(Qt) + Basc[(N — 1)Qt] + B3sc(NQt) + Bysc[(N + 1))
and

sc(-) denotes eithersin(-) orcos(-) (54)

Py than has the form

Py = Cy5¢(2t) + Casc[(N — 1)Qt] + Cssc(NQ) + Cysc[(N + 1)2t]
+Cssc(Qt)sc(t) + Cgsc[(IN — 1)Qt]sc(2t)
+C75c(NQ)sc(Qt) + Cgsc[(N + 1)Qt]sc(2t)
+Cysc|[(N — 1)Qt]sc[N — 1)Qt] + C1gsc(NQt)sc[(N — 1)) (55)
+Chisc[(N + 1)Qt]sc[(N — 1))
+C125¢(NQU)sc(NQ) + Crzsc[(N + 1)Qt)sc(NQt)
+Crasc[(N + 1)Qt)sc[(N + 1)Q¢]

The following rules and identities are used to simplify equation (55)

1. sin{a =+ B) = sinacos B £ cos a sin
(a£pB) B B } (56)

cos(a £ B) = cos acos B F sin asin 3
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2. sinasing = —% cos(a+ B) + %cos(a - B)
sinacos B = 3 sin(a + B) + § sin(a — B)
cosasin 3 = % sin(a + G) — %sin(a -B)
cosacos B = 3 cos(a + ) + Fsin(a—B) |

5\

57)

3. Rule for the Linear Combination of Monofrequency Sinusoidal Terms (see app. A).

Using the above defined rules and identities, equation (55) can be rearranged to a form with no sinusoidal

products.

Ppr = Do + Dy sin[Qt + o1] + D3 sin[2(2t) + o9]
+D3sin[(N — 2)Qt + 03] + Dy sin[(N — 1)Qt + 4]
+Ds sin[N (Q2t) + o5] + Dg sin[(N + 1)Qt + o¢]
+D7sin[(N + 2)Qt + o7] + Dgsin[(2N — 2)Q¢ + o]
+Dgsin[(2N — 1)Qt + o9g] + D1g sin[2N (Qt) + o19]
+D11sin[(2N + 1)Q + 011] + Digsin[(2N + 2)Qt + o19]

where

Coefficient in equation (55)

Cu4

Table 1.

Sinusoid in equation (55)

sc(Q2t)

sc[(N-1)Q2t]

sc[N(2t)]

sc[(N+1)Qt]
sc(Q2t)sc(Q2t)
sc[(N-1)Q2t])sc(2t)

sc[ N (2t)]sc(§2t)
sc[(N+1)Qt]sc(§2t)
sc[(N-1)Qt]sc[(N-1)2t]
sc[N(Q)]sc[(N-1)Qt]
sc[(N+1)Qt]sc[(IV-1)t]
SC[N(Q2t)]sc[N(§2t]
sc[(N+1)Qt1sc[N(2t)]
sc{(N+1)Q2]sc[(N+1)Q2t)]

(58)

Yields sinusoidal terms of the form

=sc(S2t)

=sc[(N-1)Qt]

=sc[N(Qt)]

=sc[(N+1)Qt]

=>sc[2(€2t)] and a constant
=sc[N(€2t)] and sc[(N-2)Q2t]
=sc[(N+1)Qt] and sc[(N-1)$2t]
=sc[(N+2)Qt] and sc[N(Qt)]
=sc[(2N-2)2] and a constant
=sc[(2N-1)Qt] and sc(2t)
=sc[2N(2t)] and sc[2(2¢)]
=sc[2N(€2t)] and a constant
=sc[(QN+1)Q2t] and sc(§t)
=sc[(2N+2)Q2t] and constant

23



The power constraint can be written as:

Py = KpPy < [Prlpmax (59)

or
12

Kp Y |Djl < [PHlaax
j=0

3.0 RESULTS

Six constraint functions associated with swashplate blade pitch control were defined by expressing
them in explicit equation form. These functions constrain: 1) blade pitch Fourier Coefficients expressed
in the Rotating System, 2) blade pitch Fourier Coefficients expressed in the Nonrotating System, 3) stroke
of the individual actuators expressed in the Nonrotating System, 4) blade pitch expressed as a function
of blade azimuth and actuator stroke, 5) time rate-of-change of the aforementioned parameters, and
6) required power. In addition to the aforementioned constraints, the kinematics of swashplate blade
pitch control referenced to the individual strokes of the actuators in the nonrotating system were derived
using vector analysis.
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APPENDIX A
RULE FOR THE LINEAR COMBINATION OF MONOFREQUENCY
SINUSOIDAL TERMS

Consider first the sum of three monofrequency sinusoidal terms; specifically if given
w = Fysin(@ + ¢q) + Fysin(f + ¢2) + F3sin(6 + ¢3) (A-1)

Noting that
sin(6 + ¢) = sinf cos ¢ + cos 6 sin ¢

Then
w = Fy sinfcos ¢ + F} cosfsin ¢y
+Fysinf cos ¢g + Fo cos 6 sin ¢p (A-2)
+F3 sin 6 cos ¢p3 + F3 cos 6 sin ¢3
or w = [Fy cos ¢1 + F5 cos ¢o + F3cos ¢3] sin§ A-3)
+([F} sin ¢1 + Fo sin ¢ + F3sin ¢3] cos 6
Let
Hs; = Fjcos¢y + Focos ¢ + F3cos ¢3 (A4)
H, = Fysing; + Fysin¢g + F3sin ¢3
Then
w = Hgsinf@ + H.cos b (A-5)
or
H ) H :
w=/H2+ H? { (\/ﬁ) sinf + (W) cose} (A-6)
or still

w= \/H§+Hg{ cosﬂsin0+sinﬂc050} (A-T7)

where [ is the phase angle defined by:

B =arc{sinB,cos 8} or B=tan"! (%) (A-8)

w=1/H2+ H? sin(f + B) (A-9)

Now consider the general case where:

and

w = Fy sin(0 + ¢s;) + Fosin(6 + ¢s,) + ... + Frsin(6 + ¢, )

(A-10)
+G1cos(0 + ey ) + Gocos(f + dey) + - .. + Gprcos(0 + ¢cy,)
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Noting that :
sin(6 + ¢) = sin @ cos ¢ + cos # sin ¢

and ‘
cos(f + @) = cos f cos ¢ + sinfsin ¢

Then

w = Fj cos ¢g, sin @ + Fy sin @s, cos 6 + Fy cos ¢, sin 6 + F sin ¢, cos §
+...+ F[, cos ¢s, sinf@ + Fy,sin¢s; cosf
+G1 cos ¢y cosf — G sin ¢¢, sinf + G cos P, cos § — Go sin ¢, sin §
+...4+ Gprcos gc,y, cos @ — G sinde,, sinb
Equation (70) can be rewritten as
w = Hgsinf 4 H.cosf

where
Hs = Ficos¢s, + Focos sy + ...+ F cosgs,

—Gy1singe, — Gasinge, — ... — Gprsinge,,
He = Fysings) + Fosings, + ...+ Fpsings;
+G1c0s ey + G208 ey + ... + Gprcos de,,

Equation (71) can be rewritten as

H H,
w=H2+ H2{| ——=— |sinf+ | ——=5—} cos¥
e {<\/H§+HZ VHZ + H?

w =/ HZ +H§{cosﬁsin0+ sin,ﬁcos@}

where 3 is the phase angle defined by:

or still

B =arc{sinB,cos8} or P=tan"} (—)

w=/HZ+ HZsin(6 + 3)

and
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